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The strong unicity theorem, first given by Newman and Shapiro (4), may

be described as follows: Given C[a,b] and W an n-dimensional Haar sub-

space of C[a,b]. Let f€C[a,b] and pgeW be the best approximation to f
from W. Then there exists a positive constant y, depending only on f, such
; that '

I - pH2NIf - pell + vllp - pgll (1.1)
for all peW where ||h]]| = max{|h(t)|: te[a,b]}, h&eC[a,b]. The extension

LS B

N

of this theorem to the setting of monotone approximation has recently been
studied by Fletcher and Roulier (3) and Schmidt (5). Specifically, fix an

interval [a,b], integers 12rg<...<ry, signs e4=t1, i=0,...,k and define
K'K(ro....,rk;eo,....ek) by .
P(rj)(x)gp, a<x<b, j=0,1,...,k with k<n} (1.2)

.
4 I R R p 4 I
-

K’{Pe Hn: e'j
, where L denotes the class of all real algebraic polynomials of degree < n.

The study of approximation of C[a,b] by K is called the monotone

* TResearch supported in part by the National Science Foundation, unggeoved for public
‘T\\ ’ grant MCS-76-08518. aistridution unlimitede
et Research supported in part by the Air Force Office of Scientific Research,
’ . 4. Air Force Systems Command, USAF, under contract F-49620-79-C-0124 and by
; “:;;:thc National Science Foundation, under grant MCS-78-05847.
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approximation problem. Professor G.G.Lorentz has played a major rt;le in’
the development of the theory for this problem. See (2) for a brief expo-
s_itor,y treatment of this problem and an extensive bibliography.

In (3), Fletcher and Roulier constructed an example in K={pen3: p'®>0
on [-1,1]} which shows that the best result of form (1.1) that could hold
in this setting would be where ||p-pc|| is replaced by llp-pfllz . Also, some
positive results were given that were extended by Schmidt (5). In (5) it
is proved that given fe€C[a,b], K as defined in (1.2), Ps<K the best mono-
tone approximation to f and a positive constant M, there exists y>0 depen-
ding only on f and M such that

UE = Pl 2 IF = pell +vllp - pgll? , (1.3)
for all p € K satisfying ||p|| < M.

In (5) one has the following definition: If P¢ is the best uniform
~ approximation to fe€C[a,b] from W a subset'of C[a,b], we say that pg is

strongly unique of order a (0<a<l) if for each M>0 there is a constant y>0

such that

IF - Pl lIf - pell +vllp - pell/®
for all peW satisfying |[p|| <M. Thus, these two papers taken together show
that in monotone approximation strong unicity of order 1/2 holds and this
1s a best possible result.

In this paper we shall show that by taking an appropriate combination
of interpolatory constraints with a monotone constraint one obtains an
approximation problem in which strong unicity of order —215-, m a positive
integer, holds and that this is also a best possible result.

Thus, fix m a positive integer and define KC M, by

K= {pen,: p“)(x)z.o,aixib and p(z)(xo)-...=p(2m'”(x°)-0 for
xq€{a,b) Fixed, nx2m1}. (i
Now, by referring to the general theory of (1), one can prove that

corresponding to each fEC[a,b], there exists a unique best approximation,

o ” o Vet ol S it s sl il
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Ps from K to f. The basic tools of this theory are extreme linear func-
tionals (extremals) of the dual of L corresponding to f and a given p&Kk.
In this particular setting the extremals are as follows. Given feC[a,b]
and peK, define for xe [a,b], eg on C[a,b] by eg(g)=g(x) for all geC[a,b]
(point evaluation) and for x €[a,b], and 1<j<2m, ei on I, by ei(q)=q(j)(x)
for all QEM,- The linear functional eg, xe[a,b], is said to be an extre-
mal for f and p provided leg(f-p)ls [[f-p]|. The linear functional el,
xe[a,b] is said to be extremal for f and p provided el(p)=0. Whenever el

is an extremal for f and p and x¢{a,x0,b} then an additional extremal

called an augmented extremal is also present; namely, the extremal e’Z‘ for
which ei(p)=0 must also hold (since p(])(x)lo). If elo is an extremal for

f and p, then the linear functional eZm is an augmented extremal for f and

p with ez'"(p) =0 holding (since p(”(x)>0) If one starts with an extremal
2
X0
mented extremals (as described above) to this set, then one has the aug-

set for f and p (which contains el ,. -,ezz ]) and adds all possible aug-
mented set of extremals for f and p corresponding to the original extremal
set. Observing that these augmented extremal sets always correspond to
Hermite-Birkhoff interpolation problems in which every supported block is
even, it is relatively straightforward to prove that the maximal augmented
extremal set for f and its best approximation, Pgs from K must have n+2
elements which span the dual of T, Thus, K is generalized Haar and unique-
ness of best approximations holds (1). In addition, suppose Ps is the best
approximation to f from K. Then there exists k<n+2 extremals (e.g. (2)),
E-{ei}f,], none of which are augmented extremals, for which 2 belongs to
the convex hull of {o(e)e: ecE} where a(e)=sgn(f(x)-pf(x)) if e=eg for some
xe[a,b], o(e)=1 if eae; for some ye[a,b] and a(eio)sl. =24 .us 2m=-1. Then,
by adjoining to E the set g2=(an augmented extremals corresponding to
elements of E} we must have that the set E2Y9=gUE? contains at least n+2

elements of n; which will necessarily span n; by the fact that every

ity




supported block in the corresponding Hermite-Birkhoff problem is even.

‘Likewise, we must have that there exists eeE for which eseg some xe{a,b]

as otherwise E is also an extremal set for f and Pgtc, ¢ any constant, for

which 2 is in the convex hull of {o(e)e: eeE} violating uniqueness of best

approximation. Using these observations we can now prove

THEOREM. Let fe C[a,b] and PsEK be the best approximation to f from K.

Given M>0 there exists y=y(f,M)>0 such that for peK satisfying ||p|| < M,
IF - pll2If - pell + vllp - pell™

'(1.e. strong unicity of order %) and this inequality is best possible.

i

Proof: The proof is an extension of the techniques of Fletcher and Roulier

and Schmidt. If f<K then v=(2M)'"2" suffices. Thus, assume f#K. Let

E={e, }';,-l be a set of k extremals, which contains {eio}?:"? but contains no
augmented extremals, for which 2 is in the convex hull of E(e)e: e sE}. Set

E39-c ugl, Further, define Eo. E]c E, where eeE is in E0 if e=e2 for some

x&[a,b] and ect! if e=e;

P-P

] . = = . - '
I, by llq]|* =max{|e(q)|: e€E}. Set Q {q'-ﬂ_ﬂ"pf-p : llpg-pll* #0 and peK}. We
claim that inf maxoa(e)e(q)=r > 0. Indeed, if there exist q€Q with

for some ye[a,b]. Define the semi-norm ||+]|* on

:)Ezoo(e)e(q)io. Then from q&"-s:%“—. with |[pe-p||' #0 and p €K we see that

e(q)#0 for some ecE and e(q)<0 for all e€El. Thus, o(e)e(q)<0 for all

e€E with strict inequality holding at least once. This violates the fact

that 2 belongs to the convex hull of {o(e)e: e<E}. Using this lower bound,

we have for p€K with IIpf-pll ' 40 that there exists e<E? for which

-o(e)e(pg-p)>t [lpe-p||* . Now observe that (as usual) .
I = pll<IIf - pell +vlipe - pll* - &

As this inequality holds for || P¢-P|[' =0, we have a strong uniqueness-type 4

result for the seminorm ||-||' . Next, the norm, [|p|| *=max{|e(p):eeE®"9}, is
introduced. Thus, there exists a constant A>0 such that ||p|| *>a|lp||% P,
Finally, we claim that there exists A>0 for which lipg=pll* 2A (llpf-pll*)z'".
¥ peK satisfying ||p|| <M. First observe that lpg=p||' =0 with peK implies

- N A - st . S cni I et AN
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e(pf-p)=0 Va E3Y 5o that IIpf-p||*=0. Now, for ecE, there exists a con-

stant K, for which Ie(pf-p)|_>_K]|e(pf-p)|2m as ||p|| <M. Let ec E?Y9E and

assume that e=e,2('" (the augmented extremal corresponding to elo). We claim
0

that there exists K,>0 for which Ielb(Pf'P)ILKZIEE';(Pf'P)Izm‘V’ peK satis-

fying [|p|| <M. If this is not the case, then corresponding to each integer

v>0 there exists q € K with [[q_[| M for which lq",(xo)l%lq\(,zm)(xa)lzm. Now

we may assume that q, converges uniformly to qeK. Clearly, g '(x0)=0. We
{2 (x
can write q|(x)=q; (xo)#(—)—.(x xo)z'“ Lis (x)(x-xo) =8 *a (x-xo)z'“'

+sv(x)(x-xo)2'“ where §-0,a -0 (as q(z"')(xo)=0 since q€K), |sv(x)|5M-l for

all xefa,b], some M; independent of v and q'(x)>0‘V' x e[a,b]. Thus,

Ogsvﬁv(x-xo)zm 1+M-l(x-x0)2m for x&[a,b]. For v sufficiently large (so

(2m-1) (ZmM 2m
%v (2m-1) 1 2m
that x&(a,b)), set x-xg= " This gives My Zrn-l) B,<a " or

that there exists a constant K] independent of v (sufficiently large) such
that Iq\')(xo)llK]Iq\(,zm)(xo)lzm which is our desired contradiction. Finally,
if ecEYIrE is of the form e=e2

Y
(modified) shows that there exists Ky for which le (pf p)|>K2|e (Pg- p)lzZ

some ye(a.b)w{xo}, the above argument

>|(3|e2(pf p)[ ¥ peK satisfying ||p|| <M where K3 is independent of p. By
taking A to be the smallest of the constants produced above, we have that
lIpg=pll* >A(llpe-plI* )2™ implying | f-pl| > | F-pell +vllpf-pllz'"’v‘ PEK satis-
fying ||p|| <M with y=y(M,f)>0 independent of p.

To show this result is best possible v)e construct an example. Fix m a

positive integer and let SRS denote the three roots of po(x)=x2""'1

+2x2m-l (note -2<r1<-1, ry=-1, 0<r3<1). Define K-{penm]: p'(x)>0,
xe[r],ra], 0=p(2)(0)=...=p(2""1)(0)}={p(x)=aoxzmﬂ+a]x2m+a2x+a3: p'(x)>00n

[rl,r3]}. Define geC[r],rs] by g(r])-%. 9(-1)-%—. g(r3)=-%- and extend g

1inearly to all [ry,r4]. Set f=sr+z;<2'“” st

eg],-ega,ea} is an extremal set for f and pe whose convex hull contains the

zero of V*, V-{aoxm1+a]x2m+a2x+a3}. (Coefficients are: a]-l, u2=1+a3,

an se(x)=2x . Note that {-eo ’
f 2]




amt] :
-ry -1
ca-;z%;T:T—, a4=r]+a2+u3r3, respectively.) Thus, Ps is the desired best
3
approximation to f from K(z). Next, define pu(x)=pf(x)+ap0(x)+4ma2mx, for

O<aza, where ¢g is chosen so small that lf-pa|=|g-a{p0+4ma2m']x]| decreases
as x moves away from r in a neighborhood of {r],rz,rs} for all o (0<a§gOL
This can be done since |g| decreases linearly as x moves away from ry-
Hence o, can be chosen so small that Hf—pall= __max ](f—pa)(riPl. O<azag
*f(-1)-B (-1)=gt4na’™. A1so, [|F-pell <3 Ipg-p, Il 3[p¢(0)-p, (0)[=a and
p&(x)=2(2m+1)x2m+a((2m+1)x2m+4mx2m'1)+4ma2m. Now, for x>0, p;(x)>0; for
xei[r],-a], the term 2(2m+])x2m dominates showing that p;(x)>0 here; and

for x€[-a,0] the term 4ma2m3|4amx2’“'1| again implying that Po(X)20. Thus

P,EK and ([[f-p_ || - ||f-Df||)/|le-D°||314m:B . This implies that we must have
g>2m in order for the strong unicity theorem to hold for this f and Ps- |
By suitably selecting g, it can be shown that this weaker strong uﬁi-
Queness result holds for an f which also satisfies all the constraints of
K. Additional resuits on this topic will appear elsewhere.
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